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Abstract

We show that Intuitionistic Open Induction iop is not closed under the rule
DNS(∃−1 ). This is established by constructing a Kripke model of iop+¬Ly(2y > x),
where Ly(2y > x) is universally quantified on x. On the other hand, we prove that
iop is equivalent with the intuitionistic theory axiomatized by PA− plus the scheme
of weak ¬¬LNP for open formulas, where universal quantification on the parameters
precedes double negation. We also show that for any open formula ϕ(y) having only
y free, (PA−)i ` Lyϕ(y). We observe that the theories iop, i∀1 and iΠ1 are closed
under Friedman’s translation by negated formulas and so under V R and IP . We
include some remarks on the classical worlds in Kripke models of iop.
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1 Preliminaries

1.1 Let DOR (resp. PA−) be the finite set of usual axioms (including Trichotomy) for discretely
ordered commutative rings with 1 (resp. their nonnegative parts) in the language L = {+, ·, <
, 0, 1} of arithmetic. Peano Arithmetic PA (resp. Heyting Arithmetic HA) is the classical (resp.
intuitionistic, obtained by dropping the principle PEM of excluded middle whose instance
PEMϕ on a formula ϕ is ϕ ∨ ¬ϕ) first order theory axiomatized by PA− together with the
induction scheme whose instance with respect to a distinguished free variable x on a formula
ϕ(x, y) is

Ixϕ = Ixϕ(x, y) : ∀y(ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(x+ 1, y)) → ∀xϕ(x, y)).

1



1.2 The classical Open Induction fragment Iop of PA is axiomatized by only keeping (besides
PA−) the instances of induction on open, i.e. quantifier-free, formulas. It was first studied
by Shepherdson [Sh]. He constructed a (recursive) nonstandard model proving independence
results, such as irrationality of

√
2, from Iop. Let Q̃ be the field of real algebraic numbers.

Shepherdson’s model was

St(N) = ∪n∈Z>0(t
1
n Q̃[t

1
n ] + Z)≥0 = {amt

m
n + am−1t

m−1
n + · · ·+ a1t

1
n + a0 :

n ∈ Z>0,m ∈ N, am, · · · , a1 ∈ Q̃, a0 ∈ Z, am ≥ 0,m > 0 → am > 0}.

This is equipped with the obvious + and · and the (non-Archimedean and consistent with +
and ·) order induced by t > N. We will use Shepherdson’s model and also some later results
regarding Iop (see, e.g., [MM] and [Wi]) in this paper. Our work continues the study (initiated
in [AM]) of the fragment Intuitionistic Open Induction, iop, of HA. Some of the results will also
be shown to hold for certain stronger fragments of HA as well.

1.3 We adopt the usual Kripke semantics for intuitionistic theories based on L. A Kripke
structure K for L has a frame P which is a rooted poset whose partial order is called accessibility.
Elements of P are called nodes of K. To each node α of K is attached a classical structure Mα for
L in which the interpretation of equality is an L-congruence relation which may properly extend
the true equality. For any two nodes α, β, if β is accessible from α (that is α ≤ β), then the
world at α must be a weak substructure of the one at β. This means Mβ preserves truth in Mα

of atomic sentences in Lα (the extended language obtained by adding new constant symbols for
elements of Mα) although tuples of elements of Mα may acquire new atomic properties, perhaps
equality, in Mβ. An atomic Lα-sentence is forced at α whenever it is satisfied in Mα. The
inductive definitions of forcing for ∨,∧,∃ is the same as the corresponding ones for satisfaction
or truth in classical structures, while it is stronger for → and ∀ as it requires the similar classical
defining clause to hold at every accessible node. By α  ϕ(x), one means α  ∀xϕ(x). No
node forces absurdity ⊥, and ¬A is defined as A →⊥. One says that α decides ϕ whenever
α  PEMϕ. If K  PEMatomic, then one can assume that the interpretation of equality in
the worlds of K is the true one and for any two nodes α ≤ β, Mα is a substructure of Mβ.

1.4 The instance of the least number principle LNP with respect to a distinguished free
variable x on a formula ϕ(x, y) is the sentence

Lxϕ = Lxϕ(x, y) : ∀y(∃xϕ(x, y) → ∃x(ϕ(x, y) ∧ ∀z < x¬ϕ(z, y))).

Let Lop (resp. lop) denote the classical (resp. intuitionistic) theory axiomatized by PA−

together with the scheme LNP restricted to open formulas.1

By Itop (resp. itop) we mean the classical (resp. intuitionistic) theory based on PA− plus
the scheme of transfinite induction

Itxϕ = Itxϕ(x, y) : ∀y(∀x(∀z < xϕ(z, y) → ϕ(x, y)) → ∀xϕ(x, y))

for open ϕ.

1Observe that these instances are universal closures of the corresponding ones as appeared in [TD,
p.129]. We will be dealing with double negations of instances of the two schemes in sections 3 and 6,
there will be cases where just the weaker doubly negated scheme (the one in which ¬¬ succeeds all ∀’s)
is provable.
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For a set Γ of formulas, notations such as iΓ, IΓ, LΓ and itΓ should now be understood
similarly by replacing the class of open formulas by Γ.

Formula classes ∀1, ∃1, ∆0, Π1, Σ1 and Π2 are defined as usual. E.g., by a ∀1-formula one
means a formula of the form ∀xϕ(x, y) where ϕ is open, while Π1-formulas have the above form
with ϕ ∈ ∆0. Our use of the word prenex is two-fold, a block of quantifiers followed by either
an open or a ∆0-formula, depending on the context.

1.5 For a set of axioms T , we denote its classical (resp. intuitionistic) deductive closure by
T c (resp. T i). Every intuitionistic theory (being its own intuitionistic deductive closure) can
be written in this form. A T -normal Kripke structure means one whose worlds are classical
models of T . The intuitionistic theory of the class of T -normal Kripke structures is denoted
H(T ). It was shown in [AM, 1.2(ii,iii), 1.4, 2.3(ii)] that Kripke models of lop (resp. (PA−)i)
are precisely the Iop-normal (resp. PA−-normal) ones and lop is strictly stronger than iop.
Therefore any intuitionistic theory strictly weaker than lop (and in particular iop) is sound but
not complete with respect to Iop-normal Kripke structures (since the intuitionistic theory which
is sound and complete with respect to this class is H(Iop) = lop). Let AEO, UAEO, and
AUEO be the sentences ∀x∃y(x = 2y∨x = 2y+1), ¬¬AEO, and ∀x¬¬∃y(x = 2y∨x = 2y+1)
respectively. It is also true that no fragment of i∀1 extending (PA−)i is complete with respect
to the class of its end-extension Kripke models. Every end-extension Kripke model of (PA−)i

forces UAEO → AEO but, as the proof of [AM 2.3 (ii)] shows, i∀1 0 UAEO → AEO.

1.6 The set ZR of axioms for Z-rings is DOR together with the scheme

∀x∃y(x = ny ∨ x = ny + 1 ∨ · · · ∨ x = ny + (n− 1))

for standard integers n ≥ 2. Let ZR+ be obtained from ZR by replacing DOR by PA−. Clearly
PA− + Iy(yz ≤ x) `c ∀x∀z 6= 0∃y∃r(0 ≤ r < z ∧ x = yz + r) and so Iop ` ZR+.

1.7 Let ¬¬iop denote the intuitionistic theory axiomatized by (PA−)i+{¬¬Ixϕ : ϕ is open}.
The theories ¬¬i∀1 and ¬¬lop are defined similarly, by either replacing the class of open formulas
by ∀1-formulas or the induction scheme by LNP. Also, ¬¬iΠ1 will stand for the intuitionistic
theory axiomatized by i∆0 + {¬¬Ixϕ : ϕ ∈ Π1}. For any set T of formulas, we denote {¬¬ϕ :
ϕ ∈ T} by UT .

1.8 We say that T i is closed under Friedman’s translation if whenever T i ` ϕ and ψ is a
formula which has no free variables bound in ϕ, then T i ` ϕψ. Here ϕψ, Friedman’s translation
of ϕ by ψ, is obtained by replacing each atomic subformula ρ of ϕ by ρ ∨ ψ. It is easy to see
that for any axiom σ of PA− and any formula ϕ, σ ` σϕ. In particular, (PA−)i is closed under
Friedman’s translation. On the other hand iop, i∀1 and iΠ1 are not, see [AM, 2.3(iii)] and [We2,
Cor. 5].

We say that T i is closed under the rule DNS of double negation shift whenever T i `
∀x¬¬ϕ(x) implies T i ` ¬¬∀xϕ(x). It has the Disjunction Property DP if for all sentences φ
and ψ, T i ` ϕ ∨ ψ implies T i ` ϕ or T i ` ψ. The theory T i has the property ED of Existential
Definability whenever for all formulas ϕ(x) with T i ` ∃xϕ(x), there exists a term t such that
T i ` ϕ(t). It is closed under the negative translation whenever it proves the negative translation
of any formula it proves classically. Recall that the negative translation of a formula is obtained
by replacing any subformula of the form ψ ∨ η, resp. ∃xψ, by ¬(¬ψ ∧ ¬η), resp. ¬∀x¬ψ and
inserting ¬¬ in front of all atomic sub-formulas, except ⊥. It was shown in [AM, 2.4] that iop
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and i∀1 are closed under the negative translation. Similarly, one can show that iΠ1 is closed
under the negative translation. Let us note that lop is also closed under the negative translation
since as observed in [AM, 1.2, 1.4], Iop `c Lop and lop `i iop.

2 Worlds in Kripke Models of iop

In this section, we characterize classical structures at the nodes of Kripke models of iop as
those models of PA− which generate a ring embedable in a Z-ring and construct an ω-framed
Kripke model of iop with no worlds satisfying Iop. We also show that iop has limited prenex or
semipositive consequences. A semipositive formula is one all whose implicational subformulas
have atomic antecedent.

Proposition 2.1 If T i decides atomic formulas and is closed under the negative translation,
then

(i) T c is ∀1-conservative over T i.

(ii) Each world of any Kripke model of T i can be embedded in a model of T c.

(iii) If T is ∃-free, then any model of conseq∀1
(T c) is realizable as a world in some Kripke

model of T i.

Proof (i) Suppose that ϕ is an open formula and T c ` ∀xϕ(x). Then T i ` (∀xϕ(x))−, that
is T i ` ∀x(ϕ(x)−). Now by the easily verified fact that PEMϕ `i ϕ− ↔ ϕ, we get T i ` ∀xϕ(x).

(ii) By [Ho, Cor. 6.5.3] it is enough to show any such world D is a model of conseq∀1
(T c).

By part (i), any ∀1-consequence of T c is provable in T i and is therefore forced at the node
corresponding to D. Now by decidability of atomic formulas and the formula being prenex, it
is satisfied in D (see [Ma, lemma 1(iii)]).

(iii) Any model of conseq∀1
(T c) is, by [Ho, Cor. 6.5.3] again, embedable in a classical model

of T . The Kripke model obtained by putting the latter over the former forces T i. �

Corollary 2.2 Iop is ∀1-conservative over iop and I∀1 is ∀1-conservative over i∀1.

A similar sort of argument shows that IΠ1 is Π1-conservative over iΠ1.

Corollary 2.3 For any M � PA−, The following are equivalent:

(i) M is a world in a Kripke model of iop.

(ii) M can be embedded in a model of Iop.

(iii) The ring generated by M satisfies classical ∀1-consequences of ZR.

(iv) For each prime p, there exists a ring-homomorphism from the ring generated by M to
the ring of p-adic integers.

Proof We know from proposition 2.1 that (i) and (ii) are equivalent. By [MM, 1.4, 1.5, 3A,
3B], parts (ii), (iv) and embedability of the ring generated by M in a Z-ring are equivalent. The
latter is, once more by [Ho, Cor. 6.5.3], equivalent to (iii). �
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Proposition 2.4 (i) ZR `c ∀x, y(x2 + 1 6= 4y).

(ii) DOR 0c ∀x, y(x2 + 1 6= 4y).

(iii) The model Z[u, u
2+1
4 ]≥0 of PA− is not realizable as a world in any Kripke model of iop.

Proof (i) In fact DOR+AEO classically proves the universal formula above.

(ii) Consider the ring D = Z[u, u
2+1
4 ] under the order inherited from Q[u], with u positive

and infinitely large. To prove its discreteness, suppose f(x, y) =
∑

0≤i,j≤m ai,jx
iyj ∈ Z[x, y]

and 0 < f(u, u
2+1
4 ) < 1. Then f(u, u

2+1
4 ) would be a non-integer (dyadic) rational r. Consider

the ring homomorphism e : Q[u] → Q[
√

3] induced by sending u to
√

3. The restriction of
e to D takes values in Z[

√
3] and is identity on the Archimedean part of D. In particular,

e(f(u, u
2+1
4 )) = e(r) = r. But this would be a contradiction, since Z[

√
3] does not contain any

non-integer rational.

(iii) Using corollary 2.3 (equivalence of (i) and (iii)), this is clear from (i) and the proof of
(ii) above. �

Proposition 2.5 iop+ ZR+ 0i lop.

Proof Consider the two-node Kripke model obtained by putting Shepherdson’s model above
(tQ[t] + Z)≥0. This does not force Ly(x2 < 2y2). �

Proposition 2.6 There exists an ω-framed Kripke model of iop with no worlds satisfying
Iop.2

Proof Consider the ω-framed Kripke structure K with Mn = (t
1
n! Q̃[t

1
n! ] + Z)≥0 attached

to node n. For any n, Mn � PA− and t
1

n!+1 6∈ Mn. These imply Mn 2 Ix(xn!+1 ≤ t) and so

Mn 2 Iop. Observe that for each n, (1) Mn is a substructure of Mn+1 (since t
1
n! = (t

1
(n+1)! )n+1 ∈

Mn+1), (2) ∀k ≤ n : (t
1
k Q̃[t

1
k ] + Z)≥0 ⊆ Mn and so (3) St(N) = ∪n<ωMn. To see K  iop, pick

an open formula ϕ(x, y). For 0  Ixϕ(x, y) to hold, it suffices (see [AM, 1.1(i), 1.2(iii)]) that for
every n and every b ∈ Mn, there exists m ≥ n such that ∀k ≥ m : Mk |= Ixϕ(x, b). If St(N) |=
¬ϕ(0, b) ∨ ∀xϕ(x, b), then m = n works. Otherwise, consider the least (necessarily nonzero)
element u ∈ St(N) such that St(N) |= ¬ϕ(u, b) and suppose that l is the least nonnegative
integer such that u ∈Ml. Then m = max{l, n} works. �

Wehmeier proved some limitation on Π2-consequences of iΠ1 in [We2, thm. 5]. His argu-
ments show that I∆0 + conseqΠ1

(IΠ1) `c conseqprenex(iΠ1) + conseqsemipositive(iΠ1). In the
following proposition, we show a similar sort of limitations for iop.

Proposition 2.7 (i) If ϕ is a semipositive or a prenex sentence and iop ` ϕ, then PA− +
conseq∀1

(ZR+) `c ϕ.

(ii) conseqprenex(iop) ≡c conseq∀2
(iop) `c conseqsemipositive(iop).

Proof (i) Once again, by [Ho, Cor. 6.5.3], it suffices to show that ϕ is satisfied in any
classical model of PA− whose generated ring is embedable in a Z-ring. This is clear on the basis
of corollary 2.3, [Ma, Lemma 1(iii)] and [We1, Lemma 1.2].

2On the other hand, it is proved in [We1] that any ω-framed Kripke model of HA is PA-normal.
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(ii) Clear from (i) and corollary 2.2, since Iop ` ZR+ and PA− is ∀2-axiomatized. �

If we extend the language by the modified subtraction −̇, then replacing the only axiom

∀x, y∃z(x ≤ y → x+ z = y)

of (PA−)i which is not ∀1 by

∀x, y[(x ≤ y → x+ (y−̇x) = y) ∧ (x > y → (y−̇x) = 0)],

we get a ∀1-axiomatized definitional extension of (PA−)i, see [TD, 2.7.2]. Therefore, the sets
of universal consequences and of prenex consequences of intuitionistic open induction in this
expanded language, will be classically equivalent.

Examples 2.8 (i) We have iop 0 P (2), where P (2) is the sentence ∀uvw∃x(2u = vw →
(2x = v ∨ 2x = w)). The reason is that the ring Z[t,

√
2t] can be embedded in a Z-ring, e.g. in

tQ[
√

2][t] + Z.

(ii) Smith asks in [Smi, 5.1] whether Iop proves the first case of Fermat’s Last Theorem for
exponents n ≥ 3, that is for a given integer n ≥ 3, whether Iop `(?) 1FLT (n). Here 1FLT (n) is
∀xyz∃u(xn + yn = zn → nu = xyz). To see that the intuitionistic version of this has a negative
answer, put St(N) above Z[t, n

√
2t]≥0.

3 iop fails the rule DNS(∃−1 )

In this section, we show that iop is not closed under the rule DNS(∃−1 ) of Double Negation Shift
for ∃1-formulas without parameters and iop 0 ¬¬lop.

Proposition 3.1 There exists a Kripke model of iop on frame ω which forces ¬AEO.

Proof Let (ψn)n∈ω be an enumeration of all open L-formulas with a distinguished free
variable. Each open formula ϕ(x1, · · · , xk), k ≥ 1, occurs k-times in this enumeration.

Put M0 = Z[t]≥0 and let p0,0, p0,1, · · · be a list of all tuples of parameters from M0 (an
enumeration of M<ω

0 ).

Fix any k ≥ 0. Assume that for each i ≤ k a subsemiring Mi of St(N) together with an
enumeration (pi,j)j∈ω of M<ω

i is given. For each 0 ≤ i, j,m ≤ k with i+ j ≤ k, if pi,j does not
have the same arity as the non-distinguished free variables in ψm or if St(N) |= ¬ψm(0, pi,j) ∨
∀xψm(x, pi,j), where x is the distinguished free variable in ψm, then let si,j,m = 0. Otherwise,
let si,j,m be the least element in St(N) for which St(N) |= ¬ψm(si,j,m + 1, pi,j). Let Mk+1 =
Mk[si,j,m : 0 ≤ i, j,m ≤ k, i+ j ≤ k]≥0.

Consider the Kripke structure on frame ω with Mk attached to node k. We want to show
that for any m, 0  Ixψm(x, y). Fix i ≥ 0 and let pi,j ∈ Mi, of the same arity as the number
of non-distinguished free variables in ψm, be arbitrary. We need to show i  Ixψm(x, pi,j). By
[AM 1.2(iii), 1.1(i)], it suffices to prove the following claim:

Claim 1 For each k ≥ i+ j +m, we have Mk+1 � Ixψm(x, pi,j).
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Proof of Claim 1 The assumption k ≥ i+ j +m implies that i+ j, m ≤ k. Therefore in
constructing Mk+1 from Mk, the formula ψm(x, pi,j) receives attention. If St(N) |= ¬ψm(0, pi,j)∨
∀xψm(x, pi,j), then Mk+1 |= Ixψm(x, pi,j). Otherwise, by construction, the second conjunct
of the antecedent of Ixψm(x, pi,j) fails in Mk+1 and so Ixψm(x, pi,j) itself holds there. This
establishes claim 1.

Modifying the above Kripke model, we build a slowed-down ω-framed Kripke model of iop for
which we verify in claim 2 the existence of infinitely many worlds satisfying ¬AEO. Now since
the sentence AEO is ∀2, that model will force ¬AEO and we will be done with the proposition
(as a matter of fact, we will show in proposition 3.4, based on Hilbert’s basis theorem, that all
the worlds model ¬AEO).

Consider the above construction with the minor modification that each stage is divided into
a number of substages, each of which treats just one formula and one tuple (keeping ω as the
index set for stages of construction).

Claim 2 The slowed-down Kripke model has infinitely many worlds classically satisfying
¬AEO.

Proof of Claim 2 We inductively define a strictly increasing infinite sequence of nonnegative
integers each of which labels a desired world. Let n0 = 0 (observe that t is neither even nor
odd in M0). Assuming nk is defined for some k ≥ 0, let nk+1 be the least positive integer such
that Mnk+1

= Mnk+1−1[rt
1
l ], where r ∈ Q̃ \ {0} and l = depth(rt

1
l ) is greater than the depth of

any element in Mnk
. By the depth of an element in St(N) = ∪n∈Z>0(t

1
n Q̃[t

1
n ] + Z)≥0, we mean

the least positive integer n such that the element is in (t
1
n Q̃[t

1
n ] + Z)≥0. So, depth of standard

integers is 1 and that of a real algebraic multiple of t
p
q , where (p, q) = 1, is q. More generally,

depth of a finite sum of such terms is the least common multiple of those of its terms. To see
that nk+1 exists for each k, first observe that maxdepth(M0) = 1 while if Mk+1 = Mk[u], then
maxdepth(Mk+1) ≤ (maxdepth(Mk))(depth(u)). This implies that maxdepth(Mn) is finite for
each n. Now, for each l greater than maximum depth of elements of Mnk

, the element t
1
l ∈ St(N)

enters into a world at some node (consider the formula xl ≤ t).3

Fix any k ≥ 0. Assume Mnk+1
= Mnk+1−1[rt

1
l ]. Obviously, rt

1
l is not odd in Mnk+1

. We
show that it is not even there either. Suppose not, i.e. assume for the purpose of a contradiction
that 1

2rt
1
l = f(rt

1
l ), for some f(z) ∈ Mnk+1−1[z]. We must have 1

2rt
1
l = g + brt

1
l , for some

g ∈Mnk+1−1, b ∈ Z (g is the constant term of f and b is the constant term of the coefficient of z
in f(z)). If g = 0, then 1

2 = b ∈ Z, contradiction. Otherwise, g must be a nonzero real algebraic
multiple of t

1
l , which is again a contradiction. �

Theorem 3.2 The theory iop does not validate the rule DNS(∃−1 ).

Proof We know from [AM, 2.3(i)] that iop ` AUEO, while the above proposition shows
iop 0 UAEO. �

Corollary 3.3 iop 0 ¬¬lop.4

Proof It is easy to see that PA− + Ly(2y > x) `i AEO and so ¬¬lop ` UAEO. �

3This shows that for each k, Mk 2 Iop.
4On the other hand, ¬¬lop ` iop (since lop ` iop and, as we will see in 4.5 below, ¬¬iop ` iop).
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Proposition 3.4 For each nonstandard M |= Iop including an element t infinitely many
times divisible by 2, there exists an ω-framed Kripke model of iop all whose worlds satisfying
¬AEO and their union is a (countable) model of Iop inside M .

Proof Construct a Kripke model as in proposition 3.1 by replacing St(N) by M . The
statement in claim 1 of that proposition shows that the union of the worlds models Iop.5 Assume
for the purpose of a contradiction that some world models AEO. Put t0 = t and tl+1 = tl

2 . The
ascending chain of ideals (t0) ⊆ (t1) ⊆ (t2) ⊆ · · · in the ring generated by that model must stop
as, by Hilbert’s basis theorem, every finitely generated ring is Noetherian. So, for some n ∈ N
and some g in that world, 0 = (2g−1)tn. But this is impossible as 2g−1 6= 0 and tn is infinitely
large. �

4 Friedman’s Translation by Negated Formulas

In this section, we show that the theories iop, i∀1, and iΠ1 are closed under some restricted
cases of Friedman’s translation, most notably (for applications in the next section) by negated
formulas.

Proposition 4.1 (i) If T i proves PEMatomic (resp. PEM∆0) and has a reversely well
founded Kripke model not forcing conseq∀2

(T c) (resp. conseqΠ2
(T c)), then T i is not closed

under Friedman’s translation.

(ii) If T i ` PEMatomic, then for all semipositive sentences σ and all sentences ρ, T i ` σ
implies T i ` σρ.

(iii) The theories iop, i∀1 and iΠ1 are closed under Friedman’s translation by respectively
open, ∀1, and Π1-formulas.

Proof (i) From decidability of atomic (resp. ∆0) formulas in T i we get, as mentioned in
[AM, 2.2], that T c is ∀2-conservative (resp. Π2-conservative) over H(T ). Now observe that a
generalization of the arguments for HA in [We1, 9.2] implies that if a fragment T i of HA is
closed under Friedman’s translation, then every reversely well founded Kripke model of T i forces
H(T ).6

(ii) It suffices to show the following. Let ψ be a sentence and K a Kripke structure deciding
atomic formulas. Then for any semipositive sentence ϕ we have: ∀α ∈ K(α  ϕ ⇒ α  ϕψ).
This can be shown by induction on ϕ, the less trivial cases in the induction step being the →
and ∀ ones.

→: Suppose α  ϕ1 → ϕ2, where ϕ1 is atomic. Let β ≥ α and β  ϕψ1 . We need to show
β  ϕψ2 . If β  ψ, then we will be done (since ψ `i ϕψ2 ). Otherwise, from β  ϕ1 ∨ ψ we get
β  ϕ1 and so β  ϕ2. Then by induction hypothesis on ϕ2, we get the result.

∀: If α  ∀xϕ(x), then ∀β ≥ α, ∀b ∈ Mβ : β  ϕ(b). By induction hypothesis, we get

5When the process is applied to St(N) and, as in 3.1 the infinitely large chosen element is the particular
one t, the union is indeed St(N), as this is known to be the minimal model of Iop which includes t.

6By [AM, 2.1(iii)], if T i is closed under both Friedman’s and the negative translations, then every
Kripke model of T i forces H(T ). Here we paid less and got less.
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β  ϕ(b)ψ and so α  ∀xϕ(x)ψ.

(iii) It is straightforward to see that for atomic formulas ϕ; arbitrary formulas ψ, η and
θ; any ∗ ∈ {∧,∨,→} and z 6∈ {x, y}, we have ∀z(Ixϕ(x, y))ψ(z) = Ix(ϕ(x, y) ∨ ψ(z)) and
∀z(Ix(η(x, y) ∗ θ(x, y)))ψ(z) = Ix(η(x, y)ψ(z) ∗ θ(x, y)ψ(z)). Now use [DMKV, sec.1, fact (D)] (or
lemma 5.1 below) and [TD, exercise 2.1.4]. �

Note that part (iii) of the above proposition can be considered as a special case of corollary
4.5 below.

Recall the two pruning lemmas in [DMKV]. The first one belongs to general Kripke-model
theory. It says that if β is a node of a Kripke model K, ϕ and ψ are formulas in Lβ such that no
free variables of ψ are bound in ϕ and β 1 ψ, then β  ϕψ iff β ψ ϕ. Here ψ denotes forcing
in the Kripke structure Kψ obtained from the original one by pruning away nodes forcing ψ.

We say that a fragment T i of HA has the pruning property if whenever β is a node of a
Kripke model of T i, ψ ∈ Lβ and β 6 ψ, then β ψ T i. The second pruning lemma in [DMKV]
states that HA has this property. As it was proved in [DMKV] for HA itself, a fragment of HA
proving PEMatomic satisfies the pruning property if it is closed under Friedman’s translation.
Let us note that the converse is also true. Assume that T i has the pruning property and T i ` ϕ.
Then pruning the nodes forcing ψ from a Kripke model of T i not forcing ψ would result in a
model of T i and so for any remaining node α, α ψ ϕ. Therefore, by the first pruning lemma,
it must have forced ϕψ originally. Note that the mentioned equivalence is indeed true formula
by formula (for pruning or translating by).

Lemma 4.2 For any Kripke structure K, any sentence σ with K  σ, and any formula ϕ,
we have K¬ϕ ¬ϕ ¬¬σ.

Proof Suppose K  σ (σ an L-sentence) and α ∈ K¬ϕ. For any β ≥ α with β ∈ K¬ϕ, we
have β 1 ¬ϕ and so there exists γ ≥ β such that {δ ∈ K : δ ≥ γ} ⊆ K¬ϕ. Therefore, from
γ  σ, we get γ ¬ϕ σ. This shows α ¬ϕ ¬¬σ. �

Proposition 4.3 UTh(N) 0i PA−.

Proof Consider the Kripke model obtained by putting a nonstandard model of Th(N) with
an infinitely large positive element t over N[t]. The lower node does not force ∀x, y∃z(x ≤ y →
x+ z = y). �

Lemma 4.4 For arbitrary formulas ϕ and ψ, we have: ¬¬∀y(ϕ(y) → ∀xψ(x, y))+PEMψ `i
∀y(ϕ(y) → ∀xψ(x, y)).

Proof ¬¬∀y(ϕ(y) → ∀xψ(x, y)) `i ∀y¬¬(ϕ(y) → ∀xψ(x, y)) ≡i ∀y(ϕ(y) → ¬¬∀xψ(x, y))
`i ∀y(ϕ(y) → ∀x¬¬ψ(x, y)). �

Corollary 4.5 We have iop ≡ ¬¬iop, i∀1 ≡ ¬¬i∀1, and iΠ1 ≡ ¬¬iΠ1. These three theories
are closed under Friedman’s translation by negated formulas.

Proof Observe that each instance of induction in iop, i∀1 or iΠ1 is of the form present in
lemma 4.4 with ψ open or ∆0. Also (PA−)i ` PEMatomic and i∆0 ` PEM∆0 . Therefore,
we have the mentioned equivalences. Now to see their closure under Friedman’s translation by
negated formulas, first note that if K  iop, then by 4.2, K¬ψ ¬ψ Uiop and since K¬ψ is PA−-
normal, K¬ψ  (PA−)i. The proof for i∀1 is similar, while the one for iΠ1 uses the criterion for
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Kripke models of i∆0 (being I∆0-normal and ∆0-elementary extension). �

5 Closure under the rules V R and IP

As mentioned above, we know that the theories iop, i∀1 and iΠ1 are not closed under Friedman’s
translation. So, it would be of interest to investigate the validity of some of the consequences of
closure under Friedman’s translation, known to hold say for HA, in these cases.

A fragment T i of HA proving PEM∆0 (resp. PEMatomic but not PEM∆0) is said to
be closed under Visser’s Rule V R if whenever it proves ¬¬ϕ → ϕ, for a Σ1-formula (resp.
∃1-formula) ϕ, then ϕ is decidable in T i. It was proved in [DMKV] that HA is closed under
V R.

The Independence of Premises rule IP is proved for HA in [TD]. This asserts that if HA `
¬ϕ → ∃yψ, with y not free in ϕ, then HA ` ∃y(¬ϕ → ψ). A restricted version where ϕ is a
sentence and ψ has only y free is proved in [Dr, P.117]. The latter mentioned proof works for
any fragment iΓ of HA, where Γ is a set of formulas. For, each theory iΓ has its class of Kripke
models closed under Smorynski’s operation Σ′, see [Smo]. Besides this restricted IP , two further
consequences of Σ′-closure are closure under DP and ED.

It is also true that the class of Kripke models of lop is closed under Σ′. For, by [AM, proof
of 1.4], models of lop are exactly Iop-normal Kripke structures.

Lemma 5.1 For any T i with decidable atomic formulas, any ∃1-sentence ψ and arbitrary
sentence ρ, we have T i ` ψρ ↔ ψ ∨ ρ.

Proof This can be shown by an easy induction on the built-up of ψ. Alternatively, one can
give a routine model-theoretic proof using the first pruning lemma and [AM, 1.1(ii)]. �

Theorem 5.2 The theories iop, i∀1 and iΠ1 are closed under the rules V R and IP .

Proof For V R, by corollary 4.5 and lemma 5.1, the proof at the end of [DMKV] goes
through. For IP , by corollary 4.5 again, the proof on p. 138-139 of [TD] works. �

Notice that by [AM, 2.1(iv)], lop = H(Iop) is closed under Friedman’s translation. Therefore
it is also closed under IP and V R.

Proposition 5.3 There exist sentences η, ρ, and ν such that:

(i) The rule V R is not valid in iop+ η.

(ii) The rule DP is not valid in iop+ ρ.

(iii) The rule IP (even the above restricted version) is not valid in iop+ ν.

Proof In this proof, we denote the sentence ∃x∃y ((x+ 1)2 = 2y2) by Rational(
√

2).

(i) Let η be ¬¬Rational(
√

2) → Rational(
√

2). The sentence Rational(
√

2) is ∃1 and iop+η 0
Rational(

√
2) ∨ ¬Rational(

√
2) as Σ′ applied to St(N) and N shows.
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(ii) We mention two groups of examples for such ρ’s. Let ρ = τ ∨ ¬τ , where either:

(a) Iop ` τ and iop 0 ¬¬τ (this happens, e.g., for τ = AEO as proposition 3.1 shows); or

(b) Iop 0 τ and Iop 0 ¬τ (as it happens, e.g., for τ = Rational(
√

2)).

(iii) Consider ν : ¬AEO → Rational(
√

2) and the Kripke model K in the proof of proposition
3.4(ii) where Rational(

√
2) is forced.7 Now let K1 be the result of applying Σ′ to K and St(N).

It forces ν but not ∃y(¬AEO → ∃x(x + 1)2 = 2y2). To see this, note that for any l ∈ N, the
nodes in K1 forcing ¬AEO are those of K, none of which forces ∃x (x+ 1)2 = 2l2. �

6 Some Remarks on W¬¬LNP and I t

We have already noticed that with the instances of LNP universally quantified out on the
parameters, iop 0 ¬¬Ly(2y > x). On the other hand, we prove in this section that iop is
equivalent with the intuitionistic theory axiomatized by PA− plus the scheme of weak ¬¬LNP
for open formulas, where universal quantification on the parameters precedes double negation.
We also show that (PA−)i ` l1op. Here l1op is the fragment of lop restricting the open least
number principle to (open) formulas with just one free variable. We finish the paper by making
some remarks on the relation between the schemes It and LNP .

Minimal logic, which appears in the next proposition, is the weakening of intuitionistic logic
obtained by dropping the rule ⊥i (which allows to conclude any formula from ⊥, once ⊥ has
been proved with no discharged assumptions), see [TD] and [TS]. By m-provability, we mean
provability in minimal logic.

Proposition 6.1 If a fragment iΓ of HA is m-closed under the negative translation and IΓ `
LΓ, then for any formula ϕ(x, y) ∈ Γ, iΓ ` ∀y¬¬(∃xϕ(x, y) → ∃x(ϕ(x, y) ∧ ∀z < x¬ϕ(z, y))).

Proof The second proof in [TD, p.131] works. �

Corollary 6.2 iop ≡W¬¬lop.

Proof To show iop ` W¬¬lop, it remains to argue that iop is m-closed under the negative
translation. It is easy to see that each of the following schemes is provable in minimal logic:
A → ¬¬A, ¬(A ∨ B) ↔ ¬A ∧ ¬B, ¬¬(A ∧ B) ↔ ¬¬A ∧ ¬¬B, ¬¬(A → B) → (¬¬A → ¬¬B),
¬¬∀xA→ ∀x¬¬A, ¬¬∃xA→ ¬∀x¬A. See [TS, p.35] and [Da, p.162] for some of these, where,
e.g., the intuitionistic proof in the latter for ¬¬A ∧ ¬¬B → ¬¬(A ∧ B) works in minimal logic
too. These can be used to show that each axiom of PA−, m-proves its negative translation.
Furthermore for any formula ϕ, (Ix(ϕ))− = Ix(ϕ−) and if ϕ is open, then so is ϕ−.

For the converse, we give a model-theoretic proof. Let α be a node of a Kripke model K 
W¬¬lop, ϕ(x, y) an open formula, and a ∈Mα of the same arity as y. To prove α  Ixϕ(x, a),
assume without loss of generality that α  ϕ(0, a). By lemma 4.4 and [AM, 1.2(iii)], it is enough
to show that for every β ≥ α, there exists δ ≥ β such that for all η ≥ δ, Mη � Ixϕ(x, a). Fix
β ≥ α. If for all γ ≥ β, Mγ � ∀xϕ(x, a), then we may take δ = β. Otherwise, by β  W¬¬lop,

7Note that K  ∃y(¬AEO → ∃x(x+1)2 = 2y2) and K′, the result of applying Smorynski’s ′-operation
to K, does not force ν.
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there will exist γ ≥ β such that γ  ¬¬(∃x¬ϕ(x, a) ∧ ∀z < xϕ(z, a)). In particular, for some
δ ≥ γ and some d ∈ Mδ, δ  ¬ϕ(d, a) ∧ ∀z < dϕ(z, a). Clearly, such a node δ has the desired
property. �

From proposition 6.1, one can also conclude that iΠ1 `W¬¬lΠ1.

Proposition 6.3 (PA−)i ` l1op.

Proof Take an arbitrary parameter-free open formula ϕ(x). It is easy to see that, over
(PA−)i, it is equivalent to a formula of the form ∨i≤m ∧j≤n Pi,j(x) ≥ Qi,j(x), where all Pi,j(x)
and Qi,j(x)’s are in N[x]. Let K be a Kripke model of (PA−)i and α a node of K such that
α  ∃x ∨i≤m ∧j≤nPi,j(x) ≥ Qi,j(x). Then, for some a ∈Mα, Mα � ∨i≤m ∧j≤n Pi,j(a) ≥ Qi,j(a).
It is enough to show that there exists q ∈ N such that Mα � ∨i≤m ∧j≤n Pi,j(q) ≥ Qi,j(q).
Suppose not (which implies that a is nonstandard). Then for all q ∈ N and i ≤ m, there exists
j ≤ n such that Mα � Pi,j(q) < Qi,j(q). From here, for each i ≤ m, we see the existence
of ji ≤ n such that for infinitely many q ∈ N, Mα � Pi,ji(q) < Qi,ji(q). This shows that for
each i ≤ m, the leading coefficient of Pi,ji(x) − Qi,ji(x) ∈ Z[x] is negative which contradicts
Mα � ∨i≤m ∧j≤n Pi,j(a) ≥ Qi,j(a). �

Remark. The above proof heavily relies on ϕ being parameter-free. For example, iop 0
¬¬Ly(2y > x) implies in particular that (PA−)i 0 Ly(2y−x ≥ 0). There are suitable parameter-
substitutions like t ∈ Z[t]≥0 � PA− for x so that the resulting polynomial 2y − t has positive
leading coefficient with respect to y but is still negative for all y ∈ N.

Proposition 6.4 We have iop ≡ itop, i∀1 ≡ it∀1 and iΠ1 ≡ itΠ1.

Proof First note that, as observed in the proof of [AM, 1.4], Iop ≡ Lop and it follows from
our next paragraph below that, for any class Γ of formulas closed under ¬, LΓ ≡ ItΓ. Therefore,
Iop ≡ Itop. Also, for any ϕ, Itxϕ `c Ixϕ and if Γ is a class of formulas closed under bounded
universal quantifications, then IΓ ` ItΓ. So, I∀1 ≡ It∀1 and IΠ1 ≡ ItΠ1. For both directions
in each of the three intuitionistic versions, use the corresponding classical equivalence, closure
of all theories mentioned above under the negative translation and finally (PA−)i ` ϕ− ↔ ϕ for
open ϕ and the same for i∆0 and ∆0 formulas. �

For every formula ϕ = ϕ(x, y) in the language of arithmetic or any expansion of it, we have
`c Lx¬ϕ ↔ Itxϕ. In fact, Lx¬ϕ + PEMϕ `i Itxϕ, since Lx¬ϕ + PEMϕ `i ∀y(¬∃x(¬ϕ(x, y) ∧
∀z < xϕ(z, y)) → ¬∃x¬ϕ(x, y)) `i ∀y(∀x¬(¬ϕ(x, y) ∧ ∀z < xϕ(z, y)) → ∀x¬¬ϕ(x, y)) and
∀y(∀x¬(¬ϕ(x, y) ∧ ∀z < xϕ(z, y)) → ∀x¬¬ϕ(x, y)) + PEMϕ `i Itxϕ(x, y). On the other hand,
Itxϕ + PEMϕ 0i Lx¬ϕ. Indeed, itop ≡i iop 0 Lx¬(2x ≤ y). Let us observe that there are
atomic formulas ϕ in the expansion of the language of arithmetic by a new predicate symbol R
such that Lx¬ϕ 0i Itxϕ. To see this, consider the ω-framed Kripke structure for this expanded
language, where the nth world is the expansion of the L-structure Z[t]≥0 by interpreting R
as N ∪ {t − n, t − n + 1, · · · , t}. The instance Lx(¬R(x)) is forced at every node n, since
n  ¬R(t+1)∧∀x < (t+1)¬¬R(x). Clearly the root forces ∀x(∀z < xR(z) → R(x))∧¬∀xR(x).
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